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The theory is outlined of a procedure for characterizing the time-course of drug absorption 
by determining the mean absorption time. The procedure requires data of the type normally 
collected in bioavailability studies. 

In a recent paper it has been shown that the basic 
equations required to evaluate the extent of absorp- 
tion of a drug can be derived using the methods of 
linear systems analysis, without recourse to a 
detailed model of drug disposition (Cutler, 197Sa). 
With suitable data the time-course of absorption can 
be determined by means of numerical decon- 
volution (Cutler, 1978b, c). However, without a 
suitable reference input (such as an intravenous 
bolus dose) this method cannot be applied in 
practice. This paper outlines the theory of a pro- 
cedure, applicable to a linear system, which charac- 
terizes the absorption rate by determining its mean 
absorption time; a merit of this procedure is that 
relative values can be obtained in cases where there 
is no suitable reference input which allows absolute 
values to be determined. 

Theory 
For a linear system the relationship between an 
input H(t) and the resulting response P(t) (e.g. the 
plasma or blood concentration of the drug, or the 
intensity of the pharmacological effect) can be 
written* 

t 

P(t) = s F(T)H(t - T) dT 

where F(t) denotes the response to a unit impulse 
input (Cutler, 1978a). On taking Laplace transforms, 
this equation becomes 

0 

p(s) = f(s)h(s) . . . . (1) 

where the lower case letters denote Laplace trans- 
forms of the functions denoted by the corresponding 
upper case letters. Differentiating with respect to s 
and rearranging, 

* This equation requires that the system itself must be 
linear, but the restriction of linearity does not extend to 
the input function H(t) which may represent non-linear 
processes. 

1 dp - f(s) dh df +-  
h(s) ds h(s) ds ds 

Consider now two comparable inputs, which are 
distinguished by subscripts '1' and '2'; for each 
input an equation such as the above is obtained. 
Taking the difference between these equations, 
noting that f(s) is the same in both, we have 

----- 

dhzl 1 dP1- 1 dP2- 1 dh, -- - - -f(s) -_ - ___ 
h,(s) ds h,(s) ds [ h h )  ds hZW ds 

From equation 1 ,  
(2) 

f(s) = p,(s)/h,(s) 
= Pds)/hz(s) 

Eliminating f(s) from equation 2, and rearranging, 

(3) 
1 dpl- 1 dpz- 1 dh1 1 dhz 

-- - --_ 
P~(s) ds PZ(S) ds hi(s) ds Ms) ds 

On transformation to the time domain, this equation 
yields the required relationship. The transformation 
is achieved using the following properties of the 
Laplace transform, for an arbitrary function X(t) 
with Laplace transform x(s). 

W 

lim {x(s))- = X(t) dt 
s-0 0 

W 

-lim s-0 { g} = 1 tX(t) dt 

0 

Equation 3 gives 

where 
m 

Ai = J Pi(t) dt i =  1,2 
0 
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m - 

Pi = J tPi(t) dt i =  1 , 2  
0 

W 

0 

The terms Ai and pi are readily evaluated from 
experimental data; the former by numerical integra- 
tion of the response Pi(t) and the latter by numerical 
integration of the product tPi(t). 

The terms Hio are the mean absorption times of 
the inputs Hi(t). If the absorption of an individual 
molecule is regarded as a random event the absorp- 
tion rate Hi(t) can be regarded as specifying the 
probability distribution function for the absorption 
of an individual molecule. For this interpretation it 
is necessary to normalize Hi(t) by dividing by the 
absorbed dose 

m 
Di = JHi(t)dt i = 1,2  

0 

Then, Hi(t) dt/Di denotes the probability that an 
individual molecule, which is ultimately absorbed, 
is absorbed during the time interval (t, t + dt). 
The mean absorption times Hio are the mean values 
of the probability distributions Hi(t)/Di. 

The molecules of the drug will remain at the input 
site for various periods of time before being absorbed; 
the mean absorption time is the mean time which a 
molecule spends at the input site before being 
absorbed. Rescigno & Segre (1966) have defined the 
mean transit time for a compartment in a similar 
way. 

Further appreciation of the significance of the 
mean absorption time can be obtained from a 
consideration of specific absorption mechanisms. If 
the absorption process is first order, 

H(t) = k,D e-k"t 

with D the absorbed dose and ka a first order rate 
constant. The mean absorption time is 

- 
Ho = l /ka 

which is proportional to the half-time of the 
absorption process (@ = half-time/ln 2); alter- 
natively, go can be identified as the time required 
for the fraction l/e (-37%) of the dose to be 
absorbed. 

If a competing first-order process occurs at the 
absorption site, with rate constant k,, 

H(t) = kaD e-(ka+ke)t 

and the mean absorption time is 
- 
Ho = l/(ka + k,) 

which is again proportional to the absorption half- 
time. 

If the input term H(t) arises from a dissolution 
process which follows the cube-root dissolution law 
(Cutler, 1978b), 

3D 
tdis 

H(t) = - (1 - t/td$' t < tdjs 

= o  t > tdiS 

The constant tdi, is the time required for complete 
dissolution. The mean absorption time in this case 
is 

- 
Ho = tdjs/4 

This is the time required for approximately 42% of 
the dose to be absorbed (fraction absorbed = 

(3/4)'). 
As these examples show, the mean absorption 

time may be interpreted in terms of the parameters 
describing a proposed absorption mechanism. This 
is not the case with the 'time required to reach peak 
concentration', which can be regarded as an alter- 
native measure of absorption rate. An explicit 
expression for this parameter (when one is available) 
will always include parameters describing the dis- 
position of the drug. A simple interpretation of its 
significance in terms of an absorption mechanism is 
therefore not possible. 

Division of Pi by Ai is also a normalizing pro- 
cedure and it is notationally consistent to write 
equation 5 as 

where 
- -  

Pio = Pi/Ai i = 1 ,  2. 

Applications 
(i) Calculation of absolute values of the mean 
absorption time: if an input is available such that 
HIo is known, the value of H,O can be found from 
equation 6 when F10 and F20 are evaluated from 
experimental data on Pl(t) and Pz(t). A situation in 
which Elo is known is when the input H,(t) is an 
impulse input. In this case HIo = 0. For example, if 
H,(t) represents a rapid intravenous injection and 
H,(t) represents the rate at which the drug enters the 
blood following an intramuscular injection, the 

- 

- 
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mean absorption time for the latter input is given by 
equation 6 to be 

(ii) Ranking of inputs using relative vulries of the 
mean absorption time: in the absence of a suitable 
reference input equation 6 allows ranking of different 
inputs in terms of their mean absorption times. This 
would be useful, for example, in comparing different 
oral dosage forms; this could be regarded as an 
adjunct to conventional bioavailability studies since 
equation 6 uses only data normally obtained in such 
studies. 
(iii) Analysis of two-step processes: suppose that 
Hl(t) represents the absorption rate following a 
unit dose of drug administered orally as a solution, 
and that H,(t) represents the absorption rate follow- 
ing an oral dosage form, such as a tablet. With 
H,(t) denoting the rate of release of drug into the gut 
contents, it can be shown that H2(t) is given by the 
equation 

t 

H,(t) = H,(t - T)H,(T) dT 
0 

(Cutler, 1978a); this equation is based on the 
assumption that, once released, drug arising from 
the dosage form is subject to the same influences as 
the drug administered in solution. By following a 
procedure similar to that used to derive equation 5 ,  
it can be shown that 

- -  
Hzo = HI0 + H,O (7) 

where 

m 

0 

is the mean (normalized) release time of drug from 
the dosage form. Combining equations 6 and 7, we 
obtain 

Thus, the mean release time of the drug from the 
dosage form can be determined, in ignorance of 

both klo and Hzo. The essential feature of this 
example is that H , ( t )  represents a two-step process, 
one step of which is represented by H,(t). 

Example 
A sample calculation, which is an example of 
application (i), has been performed using simulated 
data. The data were obtained using a unit impulse 
response given by F(t) = A exp (-at) $- B exp (- bt), 
with A = B = b = 1 and a = 5. The first-order 
input function H(t) = kD exp (-kt) was used, with 
k = 4, D = 2. The response P(t) which arises due 
to the input H(t) is given by 

The data were obtained by evaluating the expressions 
for F(t) and P(t) at predetermined values of time, to 
give the following data. (ti, Fi): (0, 2); (0.1, 1.51); 
(0.2, 1.19); (0.4, 0.81); (06,060);  (0.8, 0.47); 
(1.0,0.37); (1.5,0.22); (2.0,0.14); (2.5. 0.08); (3.0, 
0.05); (3.5,0.03); (4.0,0.02). 
(ti, Pi); (0, 0); (0.1, 1.14); (0.2, 1.64); (0.4, 1.78); 
(0.6, 1.55); (0.8, 1.27); (1.0, 1.02); (1.5,0.60); (2.0, 
0.36); (2.5,0.22); (3.0, 0.13); (3.5,0.08); (4.0,O.O.S). 
The ti denotesthe preselected timevalues, Fi = F(ti) 
and Pi = P(ti). The values for Fi and Pi have been 
rounded to two decimal places. 

Using these data, evaluating the integrals involved 
by the trapezium method, equation 6 gives the mean 
absorption time as 0.24 (time units); the exact value 
(l/k) is 0.25 (time units). 

The best method of evaluating the integrals 
involved in equation 6 will depend on the data. 
In some cases it will be necessary to use an extra- 
polation procedure to estimate the contribution to 
the integrals of the unmeasured response following 
the last data point. An alternative procedure to 
numerical integration is to fit the data to an empirical 
function which can be integrated analytically. 
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